
GATE 2018 Biochemistry-XL(Q)

Q. 1 – Q. 10 carry one mark each & Q.11 - Q.20 carry two marks each.

- Q.1 To which one of the following classes of enzymes does chymotrypsin belong?
 - (A) Oxidoreductase (B) Hydrolase
- (C) Transferase
- (D) Isomerase
- Q.2 The substrate saturation profile of an enzyme that follows Michaelis-Menten kinetics is depicted in the figure. What is the order of the reaction in the concentration range between 0.8 to 1.4 M? https://www.freshersnow.com/previous-year-question-papers/

- (A) Zero
- (B) Fraction
- (C) First
- (D) Second
- Q.3 Which one of the following conformations of glucose is most stable?
 - (A) Boat
- (B) Half Chair
- (C) Chair
- (D) Planar
- Q.4 Which one of the following profiles represent the phenomenon of cooperativity?

- Q.5 Which one of the following amino acids is responsible for the intrinsic fluorescence of proteins?
 - (A) Pro
- (B) Met
- (C) His
- (D) Trp

- Q.6 The glycosylation of the proteins occurs in___
 - (A) glyoxysomes

(B) lysosomes

(C) Golgi apparatus

(D) plasma membrane

GATE 2018 Biochemistry-XL(Q)

	Q	Increasing concentration of histidine	ii	Chromatofocusing	
	P	Increasing concentration of sodium chloride	i	Phenyl-Sepharose	
		Group I		Group II	
		ees from Group II.	- 1	- 1	
Q.12	Match	the protein elution condition given in Group I with th	e app	ropriate chromatograph	
		(D) 1 & R (C) 1 & S		(D) QCK	
	(A) R			(D) Q&R	
		(P) Reduced glutathione (Q) Dithiothritol (R) Sodium dodecyl sulphate (S) Methionine			
Q.11	Among the reagents given below which one of the combination of reagents will N break the disulphide bonds in the immunoglobulin molecules?				
Q. 11 -	- Q. 20	carry two marks each.			
Q.10	Measurement of the absorbance of a solution containing NADH in a path length of 1cm cuvette at 340 nm shows the value of 0.31. The molar extinction coefficient of NADH is 6200 M^{-1} cm ⁻¹ . The concentration of NADH in the solution is μM (correct to integer number).				
Q.9		umber of NADP ⁺ molecules required to completely oxi through pentose phosphate pathway is (correct t			
	(B) ch (C) in	e increase in pH of mitochondrial matrix. anging the conformation of F ₀ F ₁ -ATPase to expel the apporting P _i from inter membrane space. Ecreasing the affinity of ADP to F ₀ F ₁ -ATPase.	ATP.		
Q.8	The movement of protons through the F_0F_1 -ATPase during mitochondrial respiration is required for				
	(B) ov (C) ov	ck of thymidylate synthase rer-expression of hypoxanthine-guanine phosphoribosy rer-expression of inosine 5'-monophosphate cyclohydrock of hypoxanthine-guanine phosphoribosyl transferase	olase	sferase	
Q.7	Which one of the following properties of the myeloma cells is used in the hybridoma technology to generate monoclonal antibody?			l in the hybridoma	

(A) P-iii; Q-iv; R-i; S-ii	(B) P-ii; Q-iv; R-i; S-iii
(C) P-i; Q-ii; R-iii; S-iv	(D) P- iv; Q-ii; R-iii; S-i

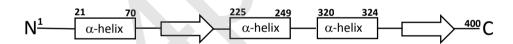
Decreasing concentration of ammonium sulphate

Decreasing concentration of H⁺

R

S

XL(Q) 2/4


iii

DEAE-Sephacryl

Ni-NTA

GATE 2018 Biochemistry-XL(Q)

- Q.13 Which one of the following is **NOT** a neurotransmitter?
 - (A) Adrenaline
- (B) Glutamate
- (C) Histamine
- (D) Histidine
- Q.14 The type-II hypersensitivity reaction is mainly mediated by_____.
 - (A) IgE
- (B) IgM
- (C) IgA
- (D) T cells
- Q.15 Which one the following reaction mechanisms drives the conversion of low energy 3-phosphoglyceraldehyde to high energy 1,3-bisphosphoglycerate?
 - (A) Oxidation without anhydride bond formation
 - (B) Oxidation coupled with anhydride bond formation
 - (C) Substrate level phosphorylation
 - (D) Formation of carboxylate
- Q.16 A polymerase reaction is carried out for 10 cycles in a volume of 1 ml with 5 molecules of template DNA. Assuming that the efficiency of the reaction is 100 %, the number of molecules of DNA present in 100 µl at the end of the reaction is ____ (correct to integer number).
- Q.17 The secondary structure topology diagram of 400 amino acid long "Protein-X" is depicted in the figure. The start and end amino acid residue numbers of each α-helix are marked. The percentage (correct to integer number) of residues forming α-helix is_____.

- Q.18 An enzyme follows Michaelis-Menten kinetics with substrate S. The fraction of the maximum velocity (V_{max}) will be observed with the substrate concentration [S] = $4K_{\text{m}}$ is _____ (correct to one decimal place). (K_{m} is Michaelis-Menten constant)
- Q.19 The mass spectrum of benzoic acid will generate the fragment as a base peak (100% relative abundance) of m/z (mass to charge ratio) at _____ (correct to integer number).

XL(Q) 3/4

GATE 2018 Biochemistry-XL(Q)

Q.20 The standard free energy (ΔG ') values of reactions catalyzed by citrate lyase and citrate synthetase are -670 and -8192 cal/mol, respectively.

Citrate
$$\xrightarrow{\text{Citrate lyase}}$$
 Acetate + Oxaloacetate $\Delta G_1' = -670 \text{ cal/mole}$

Acetyl-CoA + Oxaloacetate +
$$H_2O$$
 $\xrightarrow{\text{Citrate synthetase}}$ Citrate + CoA ΔG_2 ′ = -8192 cal/mole

The standard free energy (in cal/mol) of acetyl-CoA hydrolysis is ____ (correct to integer number).

END OF THE QUESTION PAPER

XL(Q) 4/4